

Stability analysis for the TPF interferometer

Oliver Lay 4/2/03

Jet Propulsion Laboratory
California Institute of Technology

Summary

- New class of mixed "bi-linear" errors identified which dominate the stability budget
- Not removed by phase chopping
- Leads to tolerances ~ 5 times tighter than those needed for 10⁻⁵ null depth:
 - Amplitude control ~ 0.1%
 - Phase control ~ 1 nm
 - Approx. equivalent to requirements for 5x10⁻⁷ null depth
- Non-linear frequency mixing makes these difficult to calibrate
- Dual Bracewell used as example, but basic results apply to other configurations

Scope

- Ability to isolate planet photons depends on:
 - Photon Shot noise
 - Detector gain variations
 - Thermal noise and scattered light
 - Polarization leakage
 - Null instability from E-field amplitude and phase imbalance
- This presentation is about the amplitude and phase balance. Contributors include:
 - Mirror surface figure
 - Pointing control
 - Delay tracking
 - Contamination of reflectivity
 - Dispersion effects
- The goal of this talk is to describe the new challenging requirements that have emerged

Dual Bracewell example

j	1	2	3	4
A_{j}	1	1	1	1
ϕ_{j}	0	π/2	π	3π /2

Prior view of stability requirements

Photon rates

IPL Rotate array to modulate planet signal

Null instability

A precarious balance of amplitudes and phases is holding back a deluge of stellar photons

- Any small perturbation in amplitude or phase changes number of stellar photons
 - e.g. mis-pointing, vibration, alignment drift, distortion of optical surfaces

With amplitude & phase instability

Stellar Leakage

- Analysis covers both types of leakage
- "Null floor" effects dominate "Star spillover"
 - Tolerances derived here will be same for a point-like star
- A broad null does not help
 - Bracewell, OASES, etc. all approx. equally susceptible to amplitude & phase instabilities

Null instability

 A precarious balance of amplitudes and phases is holding back a deluge of stellar photons

- Any small perturbation in amplitude or phase changes number of stellar photons
 - e.g. mis-pointing, vibration, alignment drift, distortion of optical surfaces

Dual Bracewell with chopping

j	1	2	3	4
A_{j}	1	1	1	1
ϕ_{j}	0	π/2	π	3π/2
ϕ_{j} ,	0	3π /2	π	π/2

With chopping

With chopping

Chopping requirements

		Old			
		No chopping	With		
Photon noise	<i>8</i> A	0.5%	0.5%		
(null depth)	δφ	7 nm	7 nm		
Systematic noise	δΑ	0.13%	4%		
(null stability)	δφ	2.0 nm	60 nm		

Assumes 1/f noise

- Photon noise drives requirements on amplitude and phase error
- Assumes chop action does not introduce asymmetry

New view of stability requirements

TPF SNR

δX : first order terms

Stellar photon rate

$$X(\{A_j, \phi_j, x_j, y_j\})$$

Sensitivity of photon rate to perturbations of the variables obtained by differentiation:

$$\delta X \approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \delta A_{j} + \frac{dX}{d\phi_{j}} \delta \phi_{j} + \frac{dX}{dx_{j}} \delta x_{j} + \frac{dX}{dy_{j}} \delta y_{j} \right\}$$

• But $\{A_j, \phi_j\}$ have been chosen to minimize X, so these first derivatives are close to zero:

$$\frac{dX}{dA_j} \approx 0 \qquad \qquad \frac{dX}{d\phi_j} \approx 0$$

Need to go to second order in these terms...

δX : second order terms

$$\delta X \approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \delta A_{j} + \frac{dX}{d\phi_{j}} \delta \phi_{j} + \frac{dX}{dx_{j}} \delta x_{j} + \frac{dX}{dy_{j}} \delta y_{j} + \frac{d^{2}X}{dA_{j}^{2}} \delta A_{j}^{2} + \frac{d^{2}X}{d\phi_{j}^{2}} \delta \phi_{j}^{2} \right\}$$

 Need to include the mixed 'bi-linear' terms, of which there are many:

$$\delta X \approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \delta A_{j} + \frac{dX}{d\phi_{j}} \delta \phi_{j} + \frac{dX}{dx_{j}} \delta x_{j} + \frac{dX}{dy_{j}} \delta y_{j} + \sum_{k} \left[\frac{1}{2} \frac{d^{2}X}{dA_{j} dA_{k}} \delta A_{j} \delta A_{k} + \frac{d^{2}X}{dA_{j} d\phi_{k}} \delta A_{j} \delta \phi_{k} + \frac{1}{2} \frac{d^{2}X}{d\phi_{j} d\phi_{k}} \delta \phi_{j} \delta \phi_{k} \right] \right\}$$

For 4 collectors we have 64 terms instead of 16

Breakdown by error type

 Breakdown of noise contributions (% of total noise variance):

$\left\{ \mathcal{\delta}A_{j}\right\}$	5%
$\left\{ \mathcal{\delta}\pmb{\phi}_{j} ight\}$	1%
$\left\{ \mathcal{\delta}A_{j}\mathcal{\delta}A_{k} ight\}$	20%
$\left\{ \mathcal{\delta}A_{j}\mathcal{\delta}\pmb{\phi}_{k} ight\}$	53%
$\left\{ \delta \pmb{\phi}_j \delta \pmb{\phi}_k ight\}$	20%
$\left\{ \delta x_{j} ight\}$	1%
$\left\{ \delta y_{j} ight\}$	0%

- Lo-res Dual Bracewell configuration, 40 m array length
- Solar system @ 10 pc
- Single spectral channel @ 10 μm
- Full rotation of the array
- $\delta A = 0.0005 (0.05\%)$
- $\delta \phi = 0.0005 \text{ rad } (0.8 \text{ nm})$
- $\delta x = 0.01 \text{ m}$
- $\delta y = 0.01 \text{ m}$
- Gives SNR = 2 (systematic noise only)

 Dominated by mixed, bi-linear terms, particularly amplitudephase

Chopping revisited

Phase chopping removes some errors

Breakdown of noise contributions (% of total noise variance):

But is ineffective against the new, dominant, mixed ampphase terms

Graphical examples

Error	Error Chop Collector					Resultant	Photon	Left -
term	state	1	2	3	4	phasor	rate	Right
	Left	ε	\		-	ξ.	ϵ^2	
δA ₁ ²	Right	ε		4 —		Α ε	ϵ^2	0

This quadratic error is effectively suppressed by phase chopping

Graphical examples

Error	Chop		Collector			Resultant Photon		Left -
term	state	1	2	3	4	phasor	rate	Right
SA 2	Left	ε	 		4	3 ♠	ϵ^2	•
δ A ₁ ²	Right	ε 🕴	—	4		. ε	ϵ^2	0
$\delta A_1 \delta \phi_3$	Left	ε	\	<u>3</u>	4	2ε	4ε ²	4ε ²
υπ ₁ υψ ₃	Right	\$ ε		ε		•	0	

• ...but this bi-linear error is amplified

With chopping

With chopping

Change in requirements

		0	ld	New		
		No chop	Chop	No chop	Chop	
Photon noise	δA	0.5%	0.5%	0.5%	0.5%	
(null depth)	δφ	7 nm	7 nm	7 nm	7 nm	
Systematic noise	δA	0.13%	4%	0.09%	0.1%	
(null stability)	δφ	2.0 nm	60 nm	1.4 nm	1.5 nm	

Systematic noise drives requirements on amplitude and phase error, with or without phase chopping

Non-linear complications

$$\delta X \approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \delta A_{j} + \frac{dX}{d\phi_{j}} \delta \phi_{j} + \frac{dX}{dx_{j}} \delta x_{j} + \frac{dX}{dy_{j}} \delta y_{j} + \sum_{k} \left[\frac{1}{2} \frac{d^{2}X}{dA_{j} dA_{k}} \delta A_{j} \delta A_{k} + \frac{d^{2}X}{dA_{j} d\phi_{k}} \delta A_{j} \delta \phi_{k} + \frac{1}{2} \frac{d^{2}X}{d\phi_{j} d\phi_{k}} \delta \phi_{j} \delta \phi_{k} \right] \right\}$$

- Null stability is dominated by non-linear terms
- For a linear term:
 - fluctuations in A_1 at 0.1 mHz cause fluctuations in photon rate at 0.1 mHz
- Bi-linear terms: mixing between perturbations!!
 - fluctuation in A_1 at 5.4 mHz and a fluctuation in ϕ_3 at 5.3 mHz mix to give a fluctuation in X at 0.1 mHz
- Entire PSD for amplitude and phase contributes to each fluctuation frequency in photon rate
- Means that regular calibration of amplitude and phase has limited effect

Why are these requirements hard?

- They are requirements on control, not just knowledge
- They apply to all frequencies, including DC
 - not a particular frequency range
 - PSD shape has some impact
- They apply across a factor of 3 in wavelength and to both polarizations
- Tolerances relax only as T^{1/4}
- Cannot use null depth for sensing
 - Not enough SNR to detect variations5 times weaker than planet
- So must measure amplitudes for individual beams and phases between pairs

		New 15		
		No chop	Chop	
Systematic noise	δA	0.09%	0.1%	
(null stability)	δφ	1.4 nm	1.5 nm	

What now?

3 possibilities:

- Show that new analysis is incorrect
- Find an observable for a nulling configuration that is much less sensitive to amplitude and phase perturbations
- Identify an approach to controlling amplitude to 0.1% and phase to ~1.5 nm

Summary

- New class of mixed "bi-linear" errors identified which dominate the stability budget
- Not removed by phase chopping
- Leads to tolerances ~ 5 times tighter than those needed for 10⁻⁵ null depth:
 - Amplitude control ~ 0.1%
 - Phase control ~ 1 nm
 - Approx. equivalent to requirements for 5x10⁻⁷ null depth
- Non-linear frequency mixing makes these difficult to calibrate
- Dual Bracewell used as example, but basic results apply to other configurations

Back-up slides

TPF SNR

Mitigation options considered

- Rapid rotation of the array
 - Tolerances on $\delta\!A$ and $\delta\phi$ go as $f_{rot}^{-1/4}$
- Regular monitoring and correction of A and ϕ
 - Perfect calibration every 100 s only relaxes tolerances by factor ~2 5
- Use full $0-2\pi$ sweep of phase before cross-combiner
 - Does not help since planet and star both have same sinusoidal signature

Power Spectra

$$\begin{split} \delta X &\approx \sum_{j} \left\{ \sum_{k} \left[\frac{1}{2} \frac{d^{2}X}{dA_{j}dA_{k}} \, \delta A_{j} \delta A_{k} + \frac{d^{2}X}{dA_{j}d\phi_{k}} \, \delta A_{j} \delta \phi_{k} + \frac{1}{2} \frac{d^{2}X}{d\phi_{j}d\phi_{k}} \, \delta \phi_{j} \delta \phi_{k} \right] \right\} \\ X \left(\left\{ A_{j}, \phi_{j}, x_{j}, y_{j} \right\} \right) & \delta X &\approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \, \delta A_{j} + \frac{dX}{d\phi_{j}} \, \delta \phi_{j} + \frac{dX}{dx_{j}} \, \delta x_{j} + \frac{dX}{dy_{j}} \, \delta y_{j} \right\} \\ \frac{dX}{dA_{j}} &\approx 0 \qquad \frac{dX}{d\phi_{j}} &\approx 0 \\ \delta X &\approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \, \delta A_{j} + \frac{dX}{d\phi_{j}} \, \delta \phi_{j} + \frac{dX}{dx_{j}} \, \delta x_{j} + \frac{dX}{dy_{j}} \, \delta y_{j} + \frac{d^{2}X}{dA_{j}^{2}} \, \delta A_{j}^{2} + \frac{d^{2}X}{d\phi_{j}^{2}} \, \delta \phi_{j}^{2} \right\} \\ \delta X &\approx \sum_{j} \left\{ \frac{dX}{dA_{j}} \, \delta A_{j} + \frac{dX}{d\phi_{j}} \, \delta \phi_{j} + \frac{dX}{dx_{j}} \, \delta x_{j} + \frac{dX}{dy_{j}} \, \delta y_{j} + \sum_{k} \left[\frac{1}{2} \frac{d^{2}X}{dA_{j}dA_{k}} \, \delta A_{j} \delta A_{k} + \frac{d^{2}X}{dA_{j}d\phi_{k}} \, \delta A_{j} \delta \phi_{k} + \frac{1}{2} \frac{d^{2}X}{d\phi_{j}d\phi_{k}} \, \delta \phi_{j} \delta \phi_{k} \right] \right\} \\ \text{TIPF SNR} \end{split}$$